Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611523

RESUMO

The SnRK gene family is the chief component of plant stress resistance and metabolism through activating the phosphorylation of downstream proteins. S. miltiorrhiza is widely used for the treatment of cardiovascular diseases in Asian countries. However, information about the SnRK gene family of S. miltiorrhiza is not clear. The aim of this study is to comprehensively analyze the SnRK gene family of S. miltiorrhiza and its response to phytohormone. Here, 33 SmSnRK genes were identified and divided into three subfamilies (SmSnRK1, SmSnRK2 and SmSnRK3) according to phylogenetic analysis and domain. SmSnRK genes within same subgroup shared similar protein motif composition and were unevenly distributed on eight chromosomes of S. miltiorrhiza. Cis-acting element analysis showed that the promoter of SmSnRK genes was enriched with ABRE motifs. Expression pattern analysis revealed that SmSnRK genes were preferentially expressed in leaves and roots. Most SmSnRK genes were induced by ABA and MeJA treatment. Correlation analysis showed that SmSnRK3.15 and SmSnRK3.18 might positively regulate tanshinone biosynthesis; SmSnRK3.10 and SmSnRK3.12 might positively regulate salvianolic acid biosynthesis. RNAi-based silencing of SmSnRK2.6 down-regulated the biosynthesis of tanshinones and biosynthetic genes expression. An in vitro phosphorylation assay verified that SmSnRK2.2 interacted with and phosphorylated SmAREB1. These findings will provide a valuable basis for the functional characterization of SmSnRK genes and quality improvement of S. miltiorrhiza.

2.
J Cell Mol Med ; 28(8): e18303, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613362

RESUMO

Curcuma longa, best known for its culinary application as the main constituent of curry powder, has shown potential impact on the reproductive system. This study aimed to investigate the efficacy of Curcuma longa extract (CLE) on Kidney-Yang deficiency mice induced by hydrocortisone and the possible roles in testosterone secretion in Leydig cells. We evaluated male sexual behaviour, reproductive organ weight, testosterone levels, and histological tissue changes in hydrocortisone-induced mice. CLE effectively reversed hydrocortisone-induced Kidney-Yang deficiency syndrome by improving sexual behaviour, testis and epididymis weight, testosterone levels and reducing pathological damage. Our in vitro study further indicated that CLE stimulated testosterone production via upregulating the mRNA and protein expression of steroidogenic enzymes in Leydig cells. It significantly improved H89-inhibited protein expression of StAR and cAMP-response element-binding (CREB), as well as melatonin-suppressed StAR protein expression. The data obtained from this study suggest that CLE could alleviate Kidney-Yang deficiency symptoms and stimulate testosterone production by upregulating the steroidogenic pathway. This research identifies CLE as a potential nutraceutical option for addressing testosterone deficiency diseases.


Assuntos
Glomerulonefrite , Extratos Vegetais , Testosterona , Masculino , Animais , Camundongos , Células Intersticiais do Testículo , Curcuma , Hidrocortisona , Deficiência da Energia Yang
3.
Front Plant Sci ; 15: 1356922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628367

RESUMO

Among the bioactive compounds, lipid-soluble tanshinone is present in Salvia miltiorrhiza, a medicinal plant species. While it is known that ethephon has the ability to inhibit the tanshinones biosynthesis in the S. miltiorrhiza hairy root, however the underlying regulatory mechanism remains obscure. In this study, using the transcriptome dataset of the S. miltiorrhiza hairy root induced by ethephon, an ethylene-responsive transcriptional factor EIN3-like 1 (SmEIL1) was identified. The SmEIL1 protein was found to be localized in the nuclei, and confirmed by the transient transformation observed in tobacco leaves. The overexpression of SmEIL1 was able to inhibit the tanshinones accumulation to a large degree, as well as down-regulate tanshinones biosynthetic genes including SmGGPPS1, SmHMGR1, SmHMGS1, SmCPS1, SmKSL1 and SmCYP76AH1. These are well recognized participants in the tanshinones biosynthesis pathway. Further investigation on the SmEIL1 was observed to inhibit the transcription of the CPS1 gene by the Dual-Luciferase (Dual-LUC) and yeast one-hybrid (Y1H) assays. The data in this work will be of value regarding the involvement of EILs in regulating the biosynthesis of tanshinones and lay the foundation for the metabolic engineering of bioactive ingredients in S. miltiorrhiza.

4.
J Ethnopharmacol ; : 118235, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38648891

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Astragalus mongholicus Bunge (AM, recorded in http://www.worldfloraonline.org, 2023-08-03) is a kind of medicine food homology plant with a long medicinal history in China. Astragaloside III (AS-III) has immunomodulatory effects and is one of the most active components in AM. However, its underlying mechanism of action is still not fully explained. AIM OF THE STUDY: The research was designed to discuss the protective effects of AS-III on immunosuppression and to elucidate its prospective mechanism. MATERIALS AND METHODS: Molecular docking methods and network pharmacology analysis were used to comprehensively investigate potential targets and relative pathways for AS-III and immunosuppression. In order to study and verify the pharmacological activity and mechanism of AS-III in alleviating immunosuppression, immunosuppression mouse model induced by cyclophosphamide (CTX) in vivo and macrophage RAW264.7 cell model induced by hypoxia/lipopolysaccharide (LPS) in vitro were used. RESULTS: A total of 105 common targets were obtained from the AS-III-related and immunosuppression-related target networks. The results of network pharmacology and molecular docking demonstrate that AS-III may treat immunosuppression through by regulating glucose metabolism-related pathways such as regulation of lipolysis in adipocytes, carbohydrate digestion and absorption, cGMP-PKG signaling pathway, central carbon metabolism in cancer together with HIF-1 pathway. The results of molecular docking showed that AS-III has good binding relationship with LDHA, AKT1 and HIF1A. In CTX-induced immunosuppressive mouse model, AS-III had a significant protective effect on the reduction of body weight, immune organ index and hematological indices. It can also protect immune organs from damage. In addition, AS-III could significantly improve the expression of key proteins involved in energy metabolism and serum inflammatory factors. To further validate the animal results, an initial inflammatory/immune response model of macrophage RAW264.7 cells was constructed through hypoxia and LPS. AS-III improved the immune function of macrophages, reduced the release of NO, TNF-α, IL-1ß, PDHK-1, LDH, lactate, HK, PK and GLUT-1, and restored the decrease of ATP caused by hypoxia. Besides, AS-III was also demonstrated that it could inhibit the increase of HIF-1α, PDHK-1 and LDH by adding inhibitors and agonists. CONCLUSIONS: In this study, the main targets of AS-III for immunosuppressive therapy were initially analyzed. AS-III was systematically confirmed to attenuates immunosuppressive state through the HIF-1α/PDHK-1 pathway. These findings offer an experimental foundation for the use of AS-III as a potential candidate for the treatment of immunosuppression.

5.
Plants (Basel) ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38475427

RESUMO

Salvia miltiorrhiza is a plant commonly used in traditional Chinese medicine. Its material bases for treating diseases are tanshinones and phenolic acids, including salvianolic acids. Histone deacetylase proteins (HDACs) are a class of specific functional enzymes that interact with acetylation groups on the N-terminal lysine of histone proteins further regulate gene transcription through structural changes at the chromatin level. HDACs involved in the growth and development of various plants, and induced by plant hormones to regulate the internal environment of plants to resist stress, at the same time affect the accumulation of some secondary metabolites. However, the role of SmHDACs on the accumulation of salvianolic acid in S. miltiorrhiza remains unclear. In this study, 16 SmHDACs genes were identified from the high-quality S. miltiorrhiza genome, their physicochemical properties were predicted. In phylogenetic trees co-constructed with HDACs proteins from other plants, SmHDACs was divided into three subfamilies, each with similar motif and conserved domain composition. The distribution of the three subfamilies is similar to that of dicotyledonous plants. Chromosome localization analysis showed that SmHDACs genes were randomly located. Cis-acting element analysis predicted that SmHDACs gene expression may be related to and induced by various phytohormones, such as MeJA and ABA. By combining the expression pattern and co-expression network induced by phytohormones, we speculate that SmHDACs may further influence the synthesis of salvianolic acid, and identified SmHDA5, a potential functional gene, then speculate its downstream target based on the co-expression network. In summary, we analyzed the SmHDACs gene family of S. miltiorrhiza and screened out the potential functional gene SmHDA5. From the perspective of epigenetics, we proposed the molecular mechanism of plant hormone promoting salvianolic acid synthesis, which filled the gap in the subdivision of histone deacetylase in S. miltiorrhiza research, provided a theoretical basis for the culture and transformation of S. miltiorrhiza germplasm resources.

6.
J Integr Plant Biol ; 66(3): 510-531, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38441295

RESUMO

The basis of modern pharmacology is the human ability to exploit the production of specialized metabolites from medical plants, for example, terpenoids, alkaloids, and phenolic acids. However, in most cases, the availability of these valuable compounds is limited by cellular or organelle barriers or spatio-temporal accumulation patterns within different plant tissues. Transcription factors (TFs) regulate biosynthesis of these specialized metabolites by tightly controlling the expression of biosynthetic genes. Cutting-edge technologies and/or combining multiple strategies and approaches have been applied to elucidate the role of TFs. In this review, we focus on recent progress in the transcription regulation mechanism of representative high-value products and describe the transcriptional regulatory network, and future perspectives are discussed, which will help develop high-yield plant resources.


Assuntos
Alcaloides , Plantas Medicinais , Humanos , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Alcaloides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Terpenos/metabolismo
7.
Hortic Res ; 11(2): uhad292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38414837

RESUMO

Artemisinin, also known as 'Qinghaosu', is a chemically sesquiterpene lactone containing an endoperoxide bridge. Due to the high activity to kill Plasmodium parasites, artemisinin and its derivatives have continuously served as the foundation for antimalarial therapies. Natural artemisinin is unique to the traditional Chinese medicinal plant Artemisia annua L., and its content in this plant is low. This has motivated the synthesis of this bioactive compound using yeast, tobacco, and Physcomitrium patens systems. However, the artemisinin production in these heterologous hosts is low and cannot fulfil its increasing clinical demand. Therefore, A. annua plants remain the major source of this bioactive component. Recently, the transcriptional regulatory networks related to artemisinin biosynthesis and glandular trichome formation have been extensively studied in A. annua. Various strategies including (i) enhancing the metabolic flux in artemisinin biosynthetic pathway; (ii) blocking competition branch pathways; (iii) using transcription factors (TFs); (iv) increasing peltate glandular secretory trichome (GST) density; (v) applying exogenous factors; and (vi) phytohormones have been used to improve artemisinin yields. Here we summarize recent scientific advances and achievements in artemisinin metabolic engineering, and discuss prospects in the development of high-artemisinin yielding A. annua varieties. This review provides new insights into revealing the transcriptional regulatory networks of other high-value plant-derived natural compounds (e.g., taxol, vinblastine, and camptothecin), as well as glandular trichome formation. It is also helpful for the researchers who intend to promote natural compounds production in other plants species.

8.
Environ Res ; 249: 118360, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325779

RESUMO

For human health and environment safety, it is of great significance to develop novel materials with high effectiveness for removal of lead from not only aqueous solutions but also human body and traditional Chinese medicines. Here, functional kiwi peel composite, manganese dioxide decorated kiwi peel powder (MKPP), is proposed for the removal of Pb2+ effectively. The adsorption of Pb2+ in aqueous solution is a highly selective and endothermic process and kinetically follows a pseudo-second-order model, which can reach equilibrium with the capacity of 192.7 mg/g within 10 min. Comprehensive factors of hydration energy, charge-to-radius ratio and softness of Pb2+ make a stronger affinity between MKPP and Pb2+. The possible adsorption mechanism involves covalent bond, electrostatic force and chelation, etc. MKPP can be efficiently regenerated and reused with high adsorption efficiency after five cycles. Besides, MKPP can remove over 97% of Pb2+ from real water samples. MKPP can also alleviate lead poisoning to a certain extent and make the Pb level of TCM extract meet the safety standard. This work highlights that MKPP is a promising adsorbent for the removal of Pb2+ and provides an efficient strategy for reusing kiwi peel as well as dealing with the problem of Pb pollution.

9.
Front Genet ; 15: 1349626, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370513

RESUMO

Introduction: Crocus sativus L. has an important medicinal and economic value in traditional perennial Chinese medicine. However, due to its unique growth characteristics, during cultivation it is highly susceptible to disease. The absence of effective resistance genes restricts us to breed new resistant varieties of C. sativus. Methods: In present study, comprehensive transcriptome sequencing was introduced to explore the disease resistance of the candidate gene in healthy and corm rot-infected C. sativus. Results and discussion: Totally, 43.72 Gb of clean data was obtained from the assembly to generate 65,337 unigenes. By comparing the gene expression levels, 7,575 differentially expressed genes (DEGs) were primarily screened. A majority of the DEGs were completely in charge of defense and metabolism, and 152 of them were annotated as pathogen recognition genes (PRGs) based on the PGRdb dataset. The expression of some transcription factors including NAC, MYB, and WRKY members, changed significantly based on the dataset of transcriptome sequencing. Therefore, this study provides us some valuable information for exploring candidate genes involved in the disease resistance in C. sativus.

10.
Plants (Basel) ; 13(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38256715

RESUMO

Phenolic acids are one of the major secondary metabolites accumulated in Salvia miltiorrhiza with various pharmacological activities. Moderate drought stress can promote the accumulation of phenolic acids in S. miltiorrhiza, while the mechanism remains unclear. Therefore, we performed transcriptome sequencing of S. miltiorrhiza under drought treatment. A total of 47,169 unigenes were successfully annotated in at least one of the six major databases. Key enzyme genes involved in the phenolic acid biosynthetic pathway, including SmPAL, SmC4H, Sm4CL, SmTAT, SmHPPR, SmRAS and SmCYP98A14, were induced. Unigenes annotated as laccase correlated with SmRAS and SmCYP98A14 were analyzed, and seven candidates that may be involved in the key step of SalB biosynthesis by RA were obtained. A total of 15 transcription factors significantly up-regulated at 2 h and 4 h potentially regulating phenolic acid biosynthesis were screened out. TRINITY_DN14213_c0_g1 (AP2/ERF) significantly transactivated the expression of SmC4H and SmRAS, suggesting its role in the regulation of phenolic acid biosynthesis. GO and KEGG enrichment analysis of differential expression genes showed that phenylpropanoid biosynthesis and plant hormone signal transduction were significantly higher. The ABA-dependent pathway is essential for resistance to drought and phenolic acid accumulation. Expression patterns in drought and ABA databases showed that four PYLs respond to both drought and ABA, and three potential SnRK2 family members were annotated and analyzed. The present study presented a comprehensive transcriptome analysis of S. miltiorrhiza affected by drought, which provides a rich source for understanding the molecular mechanism facing abiotic stress in S. miltiorrhiza.

11.
Plant Commun ; 5(1): 100680, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37660252

RESUMO

Tropane alkaloids (TAs), which are anticholinergic agents, are an essential class of natural compounds, and there is a growing demand for TAs with anesthetic, analgesic, and spasmolytic effects. Anisodus acutangulus (Solanaceae) is a TA-producing plant that was used as an anesthetic in ancient China. In this study, we assembled a high-quality, chromosome-scale genome of A. acutangulus with a contig N50 of 7.4 Mb. A recent whole-genome duplication occurred in A. acutangulus after its divergence from other Solanaceae species, which resulted in the duplication of ADC1 and UGT genes involved in TA biosynthesis. The catalytic activities of H6H enzymes were determined for three Solanaceae plants. On the basis of evolution and co-expressed genes, AaWRKY11 was selected for further analyses, which revealed that its encoded transcription factor promotes TA biosynthesis by activating AaH6H1 expression. These findings provide useful insights into genome evolution related to TA biosynthesis and have potential implications for genetic manipulation of TA-producing plants.


Assuntos
Anestésicos , Solanaceae , Tropanos/análise , Tropanos/metabolismo , Solanaceae/genética , Solanaceae/metabolismo , Cromossomos/química , Cromossomos/metabolismo , Anestésicos/metabolismo , China
12.
Support Care Cancer ; 32(1): 16, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085376

RESUMO

PURPOSE: The opioid crisis resulting from its use disorder and overdose poses additional challenges for cancer pain management. The American Society of Clinical Oncology Practice Guideline recommends acupuncture therapy for the management of adult cancer-related pain (CRP), but the effectiveness of transcutaneous electrical acupoint stimulation (TEAS) on CRP remains uncertain. METHODS: This 5-week prospective randomized clinical trial was conducted at 2 hospitals in China, and participants with CRP receiving chronic opioid therapy were randomized 1:1 into two groups between December 2014 and June 2018. The true TEAS group underwent 15 sessions of TEAS treatments over 3 consecutive weeks, while the control group received sham stimulation. The primary outcome was the numerical rating scale (NRS) score in the past 24h at week 3. The secondary outcomes included morphine equivalent daily dose, quality of life and adverse events. RESULTS: A total of 159 participants were included in the modified intention-to-treat population. The baseline characteristics were similar in both groups. The mean NRS scores were 0.98 points at week 3 in the true TEAS group and 1.41 points in the sham group, with the mean difference between groups of -0.43 points (P < 0.001; OR = 0.68, P < 0.05). The proportion of patients with NRS reduction more than thirty percentage at week 3 was 50.00% in the true TEAS group and 35.44% in the sham group (RD = 0.15, P > 0.05; RR = 1.41, P > 0.05). No significant difference in pain intensity between the two groups was observed during the follow-up period without TEAS intervention (week 4, OR = 0.83, P > 0.05; week 5, OR = 0.83, P > 0.05). The Karnofsky Performance Status value suggested that patients in the true TEAS group experienced an improved quality of life (Between-group differences: week 3, 3.5%, P < 0.05; week 4, 4.6%, P < 0.001; week 5, 5.6%, P < 0.001). CONCLUSIONS: The 3-week application of TEAS in patients with CRP receiving chronic opioid therapy resulted in a statistically significant reduction in pain scores, but the observed reduction was of uncertain clinical significance. The prolonged analgesic effect of TEAS was not confirmed in this trial. CLINICALTRIAL: GOV: ChiCTR-TRC-13003803.


Assuntos
Dor do Câncer , Neoplasias , Estimulação Elétrica Nervosa Transcutânea , Adulto , Humanos , Pontos de Acupuntura , Analgésicos Opioides/efeitos adversos , Dor do Câncer/tratamento farmacológico , Dor do Câncer/etiologia , Morfina , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Manejo da Dor , Estudos Prospectivos , Qualidade de Vida , Estimulação Elétrica Nervosa Transcutânea/métodos
13.
Sci Rep ; 13(1): 20351, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990133

RESUMO

The antimicrobial properties of garlic are widely known, and numerous studies confirmed its ability to inhibit the growth of Mycobacterium tuberculosis. In this work, we explored the molecular mechanism of action of sulphides present in garlic essential oil against mycobacteria. The targeted transcriptomics and untargeted LC-MS metabolomics were applied to study dose- and time-dependent metabolic changes in bacterial cells under the influence of stressing agent. Expression profiles of genes coding stress-responsive sigma factors regulatory network and metabolic observations proved that sulphides from garlic essential oil are an efficient and specific agent affecting glycerophospholipids levels and their distribution within the cell envelope. Additionally, sulphides induced the Dimroth rearrangement of 1-Tuberculosinyladenosine to N6-tuberculosinyladenosine in mycobacterial cells as a possible neutralization mechanism protecting the cell from a basic nucleophilic environment. Sulphides affected cell envelope lipids and formation of N6-tuberculosinyladenosine in M. tuberculosis.


Assuntos
Alho , Mycobacterium tuberculosis , Óleos Voláteis , Óleos Voláteis/metabolismo , Sulfetos/metabolismo
14.
Pharmacol Res ; 198: 106988, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984507

RESUMO

Profiting from the sustained clinical improvement and prolonged patient survival, immune checkpoint blockade of programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis has emerged as a revolutionary cancer therapy approach. However, the anti-PD-1/PD-L1 antibodies only achieve a clinical response rate of approximately 20%. Herein, we identified a novel combination strategy that Chinese medicine ginseng-derived ginsenoside Rh2 (Rh2) markedly improved the anti-cancer efficacy of anti-PD-L1 antibody in mice bearing MC38 tumor. Rh2 combined with anti-PD-L1 antibody (combo treatment) further triggered the infiltration, proliferation and activation of CD8+ T cells in the tumor microenvironment (TME). Depletion of CD8+ T cells by mouse CD8 blocking antibody abolished the anti-cancer effect of combo treatment totally. Mechanistically, combo treatment further increased the expression of CXCL10 through activating TBK1-IRF3 signaling pathway, explaining the increased infiltration of T cells. Employing anti- CXC chemokine receptor 3 (CXCR3) blocking antibody prevented the T cells infiltration and abolished the anti-cancer effect of combo treatment. Meanwhile, combo treatment increased the percentage of M1-like macrophages and raised the ratio of M1/M2 macrophages in TME. By comparing the anti-cancer effect of combo treatment among MC38, CT26 and 4T1 tumors, resident T cells were considered as a prerequisite for the effectiveness of combo treatment. These findings demonstrated that Rh2 potentiated the anti-cancer effect of PD-L1 blockade via promoting the T cells infiltration and activation, which shed a new light on the combination strategy to enhance anti-PD-L1 immunotherapy by using natural product Rh2.


Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Imunoterapia , Microambiente Tumoral , Quimiocina CXCL10/farmacologia
15.
Int J Biol Macromol ; 253(Pt 6): 127345, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37820909

RESUMO

Artemisia annua, a member of the Asteraceae family, remains the primary source of artemisinin. However, the artemisinin content in the existing varieties of this plant is very low. In this study, we found that the environmental factors light and phytohormone abscisic acid (ABA) could synergistically promote the expression of artemisinin biosynthetic genes. Notably, the increased expression levels of those genes regulated by ABA depended on light. Gene expression analysis found that AaABI5, a transcription factor belonging to the basic leucine zipper (bZIP) family, was inducible by the light and ABA treatment. Analysis of AaABI5-overexpressing and -suppressing lines suggested that AaABI5 could enhance artemisinin biosynthesis and activate the expression of four core biosynthetic genes. In addition, the key regulator of light-induced artemisinin biosynthesis, AaHY5, could bind to the promoter of AaABI5 and activate its expression. In conclusion, our results demonstrated that AaABI5 acts as an important molecular junction for the synergistic promotion of artemisinin biosynthesis by light and ABA signals, which provides a candidate gene for developing new germplasms of high-quality A. annua.


Assuntos
Antimaláricos , Artemisia annua , Artemisininas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antimaláricos/farmacologia , Artemisia annua/genética , Artemisia annua/metabolismo , Ácido Abscísico/metabolismo , Artemisininas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Int J Biol Macromol ; 253(Pt 7): 127430, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838114

RESUMO

Skin is the most important defense shield which touched external environment directly. Effectively clearing microbes in infected wound via non-antibiotic therapy is crucial for the promotion of recovery in complex biological environments, and the wound healing is a crucial process after sterilization to avoid superinfection. Herein, a kind of Prussian blue-based photothermal responsive gel, Bletilla striata polysaccharide-mingled, isatin-functionalized Prussian blue gel (PB-ISA/BSP gel) was reported for effective treatment of bacterial infection and wound healing. The introduction of effective components of traditional Chinese medicine (TCM), isatin (ISA), enhanced the efficiency of sterilization synergistically. Furthermore, the process of wound healing was promoted by Bletilla striata polysaccharides (BSP). PB-ISA@BSP had a considerable antibacterial rate with 98.5 % under an 808 nm laser for 10 min in vitro. Besides, PB-ISA/BSP gel showed an effective antibacterial efficacy in vivo and a fast wound healing rate as well. The as-prepared functional particles can invade and destroy bacteria membrane to kill microbes. This work highlights that PB-ISA/BSP gel is a promising antibacterial agent based on synergistically enhanced photothermal effect and wound healing promotion ability and provides inspiration for future therapy based on the synergy between photothermal agent and active components in TCM.


Assuntos
Infecções Bacterianas , Isatina , Orchidaceae , Humanos , Polissacarídeos/farmacologia , Antibacterianos/farmacologia
18.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446905

RESUMO

Due to its success in treating cardio-cerebrovascular illnesses, salvianolic acid A (SAA) from Salvia miltiorrhiza is of major importance for effective acquisition. For the adsorption of salvianolic acid, cationic polyelectrolytes, and amino-terminated silane intercalated with phenylboronic-acid-functionalized montmorillonites, known as phenylboronic-acid-functionalized montmorillonites with PEI (PMP) and phenylboronic-acid-functionalized montmorillonites with KH550 (PMK), respectively, were produced. In this paper, detailed comparisons of the SAA adsorption performance and morphology of two adsorbents were performed. PMP showed a higher adsorption efficiency (>88%) over a wide pH range. PMK showed less pH-dependent SAA adsorption with a faster adsorption kinetic fitting in a pseudo-second-order model. For both PMP and PMK, the SAA adsorption processes were endothermic. Additionally, it was clearer how temperature affected PMP adsorption. PMK has a higher adsorption selectivity. This study demonstrates how the type of intercalator can be seen to have an impact on adsorption behavior through various structural variations and offers an alternative suggestion for establishing a dependable method for the synthesis of functional montmorillonite from the intercalator's perspective.


Assuntos
Bentonita , Substâncias Intercalantes , Bentonita/química , Adsorção , Indicadores e Reagentes
19.
J Ethnopharmacol ; 317: 116697, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37295577

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza Bunge (SM) is an outstanding herbal medicine with various traditional effects, especially promoting blood circulation to remove blood stasis. It has been widely used for centuries to treat blood stasis syndrome (BSS)-related diseases. BSS is one of the basic pathological syndromes of diseases such as cardiovascular and cerebrovascular diseases in traditional East Asian medicine, which is characterized by disturbance of blood circulation. However, the bioactive components and mechanisms of SM in the treatment of BSS have not been systematically reviewed. Therefore, this article outlines the anti-BSS effects of bioactive components of SM, concentrating on the molecular mechanisms. AIM OF THE REVIEW: To summarize the bioactive components of SM against BSS and highlight its potential targets and signaling pathways, hoping to provide a modern biomedical perspective to understand the efficacy of SM on enhancing blood circulation to remove blood stasis. MATERIALS AND METHODS: A comprehensive literature search was performed to retrieve articles published in the last two decades on bioactive components of SM used for BSS treatment from the online electronic medical literature database (PubMed). RESULTS: Phenolic acids and tanshinones in SM are the main bioactive components in the treatment of BSS, including but not limited to salvianolic acid B, tanshinone IIA, salvianolic acid A, cryptotanshinone, Danshensu, dihydrotanshinone, rosmarinic acid, protocatechuic aldehyde, and caffeic acid. They protect vascular endothelial cells by alleviating oxidative stress and inflammatory damage and regulating of NO/ET-1 levels. They also enhance anticoagulant and fibrinolytic capacity, inhibit platelet activation and aggregation, and dilate blood vessels. Moreover, lowering blood lipids and improving blood rheological properties may be the underlying mechanisms of their anti-BSS. More notably, these compounds play an anti-BSS role by mediating multiple signaling pathways such as Nrf2/HO-1, TLR4/MyD88/NF-κB, PI3K/Akt/eNOS, MAPKs (p38, ERK, and JNK), and Ca2+/K+ channels. CONCLUSIONS: Both phenolic acids and tanshinones in SM may act synergistically to target different signaling pathways to achieve the effect of promoting blood circulation.


Assuntos
Salvia miltiorrhiza , Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais , Abietanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...